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Abstract

A numerical method is presented for simulating the occurrence of localized slip and separation along the interfaces
of multiple, randomly distributed, circular elastic inclusions in an infinite elastic plane. The method is an extension of a
direct boundary integral approach previously described elsewhere for solving problems involving perfectly bonded cir-
cular inclusions. Here, we allow displacement discontinuities to develop along the inclusion/matrix interfaces in accor-
dance with a linear Mohr—Coulomb yield condition combined with a tensile strength cut-off. The displacements,
tractions, and displacement discontinuities on the inclusion boundaries are all represented by truncated Fourier series,
and an explicit iterative algorithm is adopted to determine zones of slip and separation under the prevailing loading
conditions. Several examples are given to demonstrate the accuracy and generality of the approach.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Direct boundary integral method; Somigliana’s formula; Multiple circular inclusions; Imperfect interface; Displacement
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1. Introduction

In a previous paper (Crouch and Mogilevskaya, 2003) we introduced a specialized version of the direct
boundary integral method for solving elasticity problems for an infinite plane containing an arbitrary num-
ber of randomly distributed circular inclusions. The numerical procedure is based on the two-dimensional
version of Somigliana’s formula with the boundary displacements and tractions represented by truncated
Fourier series. In order to explain the method in its simplest form, we assumed that the inclusions were
perfectly bonded to the surrounding material matrix. In the present paper we relax this assumption and
allow for the possible occurrence of localized slip and separation along the inclusion/matrix interfaces.
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The term imperfect interface is used to describe a situation in which the displacements are discontinuous
at the interface between an inclusion and the material matrix. The simplest model of an imperfect inter-
face—the spring-type interface—assumes that the normal and shear components of displacement disconti-
nuity are directly proportional to the corresponding components of traction (see, for example, Benveniste,
1985; Aboudi, 1987; Achenbach and Zhu, 1989, 1990; Hashin, 1990, 1991; Zhu and Achenbach, 1991;
Sudak et al., 1999; Mogilevskaya and Crouch, 2002). The proportionality coefficients for a spring-type
interface are either assumed to be constant along the periphery of the inclusion (a so-called homogeneously
imperfect interface) or to vary in some manner along it (an inhomogeneously imperfect interface). In both
cases it is assumed that relative deformation between the inclusion and the material matrix can be repre-
sented by the deformation of a negligibly thin layer of unconnected linear springs.

A spring-type interface model is often adopted for analyses of inclusion problems using analytical tech-
niques (e.g. Gao, 1995; Ru, 1998) and boundary element methods (e.g. Achenbach and Zhu, 1989, 1990;
Zhu and Achenbach, 1991), but this simple model has limitations. For instance, a spring-type model cannot
provide any information about the displacement and stress fields within the interphase region between an
inclusion and the surrounding material matrix, because the model neglects the thickness of this region. In
addition, the spring-type model may permit a physically unrealistic overlapping of the inclusion/matrix
interfaces to occur under some loading conditions.

More elaborate representations of inclusion/matrix interactions are possible, including finite element
(Nassehi et al., 1993; Lagache et al., 1994; Al-Ostaz and Jasiuk, 1996; Wacker et al., 1998) and boundary
element (Liu et al., 2000; Mogilevskaya and Crouch, 2003) models that explictly account for the presence of
perfectly bonded interphases with non-zero thicknesses. Except for our own work (Mogilevskaya and
Crouch, 2003), however, these approaches all assume a doubly periodic array of inclusions based on the
concept of a unit cell. Our Galerkin boundary integral method allows for a random assortment of elastic
inclusions and interphases, subject only to the condition that each inclusion must be concentric with the
interphase that contains it. In our method, unlike other numerical approaches, the thicknesses of the inter-
phases can be arbitrarily small. The method accurately represents both soft and stiff interphases, as classi-
fied by Benveniste and Miloh (2001).

Another important imperfect interface condition is one for which localized slip and separation occur be-
tween an inclusion and the surrounding material matrix. Comparatively little work has been reported on
this topic. Stippes et al. (1962) solved the problem of debonding of a smooth circular inclusion in an infinite
plate made of the same material, under uniaxial tension at infinity. Subsequently, Hussain and Pu (1971)
generalized this solution for the case that the inclusion is rough so that some parts of its interface might
neither slip nor separate (a condition called “rigid linkage” by the authors). Toya (1974) considered the
problem of a traction-free, arc-shaped crack along the interface of a circular inclusion in an infinite plane
and derived a debonding criterion for the interface using the principle of virtual work and Griffith’s crite-
rion. All of these analyses are for a single inclusion and the results cannot be applied to closely spaced, mul-
tiple inclusions. The boundary element models described by Achenbach and Zhu (1989, 1990) and Zhu and
Achenbach (1991) contain interface cracks, but the locations of the cracks are specified a priori, and the use
of a unit cell representation means that every inclusion in the doubly periodic array has exactly the same
crack geometry, a circumstance that is unlikely to occur in reality. A noteworthy feature of Achenbach and
Zhu’s work, however, is that they used an iterative equation-solving technique to prohibit the occurrence of
overlapping of the inclusion/matrix interfaces.

Zhao and Weng (1997), Ju and Lee (2001), and Sun et al. (2003) use a simple technique based on the
concept of fictitious inclusions to indirectly simulate interface debonding. Their technique assumes that a
partially debonded, isotropic elastic inclusion can be represented by a perfectly bonded, anisotropic inclu-
sion with its elastic constants chosen such that the principal stress in one direction is zero. These authors are
concerned with approximating effective material properties and assume that the detailed displacement and
stress fields can be ignored for this purpose. They also assume that interactions among multiple inclusions
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can be neglected when evaluating the effective material properties, and that localized debonding does not
alter the principal stress directions in and around the inclusions (Sun et al., 2003). The authors acknowledge
that the latter assumption is open to question.

In this paper we develop a numerical procedure for simulating the occurrence of localized slip and sep-
aration along the interfaces of multiple, randomly distributed circular elastic inclusions in an infinite elastic
plane. In order to limit the number of parameters appearing in the analysis we suppose that the inclusions
are perfectly bonded to the material matrix unless slip or separation takes place. We assume that interface
failure is governed by a Mohr—Coulomb yield condition with a tensile strength cut-off, which is incorpo-
rated in the analysis by means of an iterative technique. Overlapping of the inclusion/matrix interfaces is
prevented during the iterative equation-solving process, as in the work of Achenbach and Zhu (1989,
1990). Several examples are given to demonstrate the accuracy and utility of the general numerical
approach.

2. Terminology

We consider an infinite elastic plane with Poisson’s ratio v and shear modulus p containing K randomly
distributed, non-overlapping, circular inclusions, possibly of different sizes and possibly with different elas-
tic properties. The kth inclusion is centered at the point (x,y) = (xx, V%) and has radius R, and elastic con-
stants v, and y, as depicted in Fig. 1. The stresses at infinity are 620, o and ¢°.

Each inclusion can be regarded as a circular disc inserted into a circular hole of the same radius, and the
boundary parameters for the discs and holes can be represented by truncated Fourier series. The boundary

displacements for the kth hole, for example, can be written as

1 1 .
ux(Rk, Hk) = E[k](f:j — (1 — kz)G;;ka +Rk COS 9/() + ZG?;(}/I( + Rk S Hk)

1 S :
+ > ao(ux) + Z[ank(ux) cos nly + by (uy) sin n0y]

2 n=1
1 1 . (1)
uy (R, 0r) = ZG;;(Xk + Ry cos ;) + @ [—(1 = ky)o + kla;j](yk + Ry sin 6)
1 Al
+ faOk(uy) + Z[a,,k(uy) cos n0y. + by (u,) sin nby]
n=1

Fig. 1. Multiple circular inclusions in an infinite plane.
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where 0, is the local polar angle relative to the center of the hole (see Fig. 1), Ny is the number of terms
in the Fourier series (N, may be different for each hole), and constants k; and k, are defined as
follows:

ki =2(1—v); ky=1-=2v (2)

The first groups of terms in (1) give the displacements in a plane without any holes due to the stresses at
infinity. (We assume plane strain conditions.) These “initial”’ displacements are measured relative to a fixed
reference point at the origin. The other terms in (1) represent the changes in displacement due to the pres-
ence of the holes. The notation a,,(u), b(uy) and a,(u,), bu(uy) is used to differentiate between the Fou-
rier coeflicients for the two components of displacement; no functional dependence on u, and u, is implied.

The tractions for the kth hole can similarly be written as the sums of the initial tractions and the changes
due to the presence of the holes:

Ni
te(Ry, 0r) = — (03 cos O, + ay, sin 0r) + Z[ank(tx) cosnly + by (t,) sin nby]
n=1
k G)
ty(Ry, O) = —(ajj; cos 0, + o sin 0;) + Z[ank(ty) cos nby + by (t,) sin nby]

n=1

The minus signs are needed for the initial tractions because the components of the unit outward normal
to the boundary of the hole are negative: (n,,n,) = (—cos 0, —sin 0;). Also, the n = 0 terms of the Fourier
expansions for the tractions are set equal to zero in order for the resultant force to vanish for every hole. It
can be shown (Crouch and Mogilevskaya, 2003) that vanishing of the resultant moment on each hole re-
quires that ay4(¢,) = bii(ty) for k=1 to K. Again, the notation a,(t.), bu(ty) and a.(t,), bu(t)) is used
merely to differentiate between the Fourier coefficients for the two components of traction and does not
signify a functional dependence on ¢, and ¢,.

In the same manner, the boundary displacements for the kth disc (inclusion) can be represented as

1 1 .
U (R, 0r) = H ko — (1 - ka) ](xk + Ry cos6;) + o 50 (yy + Ry sin 6y)
k k
1
+ 2aOk uc) + Z ., (uy) cosn0y + b, (u,) sin n0;]
n=1
| | 4)
M;(Rk, Bk) = TlukO';; (xk + Rk COS Gk) + rluk [7(1 — kz/()O';C( + klkay_oj](yk + Rk sin Bk)
+ aOk )+ Z L (u,) cos nO; + b, (u,) sin n0y]
in which
klk = 2(1 — Vk); ka = 1 — 2Vk (5)

and where the prime (') is used here and in the sequel to identify quantities associated with the inclusions.
The corresponding tractions are

Nk
1.(R, ) = a3 cos Oy + o7 sin O + Z[a;k(t cosnby + b, (1) sin n0y]

n=1

(Rk,f)k)—o cos O + o) sm0k+2 ) cosnly + b, (1,) sin nby]

n=1



1642 S.L. Crouch, S.G. Mogilevskaya | International Journal of Solids and Structures 43 (2006) 1638-1668

where moment equilibrium again gives a}, (¢,) = b}, (¢,) for k = 1 to K. The initial displacements and stresses
are included in (4) and (6) for conformity with (1) and (3); these terms would not be required if we were
considering a boundary value problem for an isolated disc.

Equilibrium along the boundaries of the inclusions requires that

te(Ri, 0k) + £.(R, 0,) = 0

, (7)
ty(Ri, O) + 2,(R, 04) = 0
for —n < 0y < mand k=1 to K, and it follows from (3) and (6) that
a;k(tJC) = _ank(tx); b;k(tx) = _bnk(tx)
(8)

a:zk(ty) = —au(t)); b;k(ty) = —bul(t,)

for n =1 to Ni. We note for future reference that these conditions also hold in the event that localized sep-
aration (cracking) occurs over a part of an interface; in this case the tractions 7 (Ry,0x), t,(Ry,0;) and
t (Ry, 0r), 1, (R, 0;) are individually equal to zero for those values of 0 that define the zone(s) of separation.
In view of (8), we may rewrite (6) to express the tractions on the boundary of the inclusion in terms of the
Fourier coefficients for the tractions on the boundary of the hole into which it is fitted:
Ni
£ (Ri,0;) = 0 cos O, + a, sin 0y — Z[ank(tx) cosnly + by (t,) sin nfy]
n=1
N
t;(Rk, 0p) = a,, cos b + a7 sin 0, — Z[a,,k(ty) cos nby + by (t,) sin nby]
n=1
This measure allows us to reduce the number of Fourier coefficients appearing in the analysis.
The components of displacement discontinuity for the kth inclusion are defined as the differences be-
tween the boundary displacements of the hole and disc as follows:

Auy (R, 0k) = uc(Ry, 0k) — ul(Ry, Or)

(10)
Auy(Rk, Hk) = M),(Rk, Hk) — u;(R;m Hk)
ie.

1 .

ALIX(R/(7 91() = 5 (062](0';; — 063/(0';3)()(7]( + Rk COS Qk) + O(lkO';; (yk + Rk S Qk)
1 i .
5 (o (at) = (1) + D [ (@) = (1)) cos 104 + (bye(ae) = b (1)) sin 6
n=1

1 .

Auy(Rk, Hk) = E (—{Z3k0';; -+ 062]{0';;)()//{ + Rj sin Hk) + O(lkG;j (xk + R; cos Ok)

3 () — (1)) + > [(ane(1) — 1) c0s by + (baay) — ) simnd

(11)
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in which we have set

IR

ST

O(Zk:%—éc—:; (12)
-k 1—ky

BT T T2y,

The left-hand sides of (11) can also be represented by truncated Fourier series:
1 e :
Au(Re O0) = 5 aoe(Au) + > law(Auy) cos ny + by (Auwy) sin n6]
n=1
(13)

1 & ,
Auy(Rk, Hk) = Ea()k (Auv) + Z[ank (Auy) Cos nHk + bnk(Auy) s n9k]

n=1

For a perfectly bonded inclusion the displacement discontinuities are zero, i.e. Au Ry, 0;) =
Auy(Ry, 0;) = 0, in which case the Fourier coeflicients aoi(Auy), a(Auy), bu(Auy), ete. in (13) are all equal
to zero.

By direct comparison of (11) and (13) we find the following expressions for the Fourier coefficients for
the displacement discontinuities:

(1) Forn=0
ao(Auy) = ao(ux) — ag, (uy) + (a0 — ot3ka)°;‘)xk + 201407,y (14)
ao(Auy) = aoe(uy) — ag (uy) + 2005005 + (=007, + 0407 ) vy
(2) Forn=1
an(Auy) = aye(uy) — afy (uy) + % (ool — O(3k(7;;)Rk
bu(Auy) = big(ue) — by (ue) + o1x07 Ry (15)
ai(Auy) = a(uy) — ay, (uy) + oo Ry
bu(Auy) = big(uy) — by, (uy) + % (—ok0y, + 0k )Ry
(3) Forn>1
(D) = ane(uy) — @, (u)
DBt = bugfa) = By ) 16)
e (Auy) = au(uy) — ayy (uy)
bu(Auy) = b (1) — b (uy)

3. Basic formulae

Expressions for the displacements and stresses at points (x,y) = ({, £,) in both the material matrix and
the inclusions are given in Appendices A and B. These results were derived by substituting the preceding
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Fourier series representations for the boundary displacement and traction changes into the plane strain ver-
sion of Somigliana’s formula and carrying out all the integrations analytically (Crouch and Mogilevskaya,
2003).

In order to calculate the displacements and stresses using the formulas in the appendices, it is first nec-
essary to know the Fourier coefficients for the boundary displacements and tractions for all of the inclu-
sions. These quantities are determined by solving a system of algebraic equations, which is in turn based
on a set of relationships connecting the Fourier coefficients for the displacements to those for the tractions.
The required relationships are summarized below.

3.1. Displacement coefficients for multiple holes

Relationships between the Fourier coefficients for the displacements and tractions for a typical hole j are
obtained by letting point (¢, ¢,) lie on the boundary of the hole (i.e. by taking &, =x; 4+ R;cos0; and
¢y =y, + R;sin b)), setting y; = 0; and p;= 1 in Eq. (A.1), and using the definitions of the Fourier coeffi-
cients (Churchill, 1963), which, in the present notation, are

1" L[ i
amj(ux) = E / ux(éxa éy) CcOS mﬂj dgj, bmj(ux) = E / ux(éxa éy) sm mej dej
_Z il (17)
1 1 .
anu,) =~ / uy(&, &) cosm0;d: - byy(u) = / uy (&5, €,) sinm0); do;

¥

After evaluating the indicated integrals and letting m equal n for notational convenience, we obtain the
following results:

(1) Forn=1
aij(u,) = 5—; [kay(te) — kabyj(ty)] +2k—k12 [k3dj (1) + (1 = 2k2) By (uy)]
bj(uy) = %‘i k(1) + Kby ()] + 3 [k3dj(uy) + (1 + 2k1)By; ()]
(18)
R

R, k
by;(uy) = ﬁ [—kaai(t,) + kiby(t,)] + 2_1;2 [(1 = 2k2)A1;(u) + k3Byj(u,)]

(2) Forn>1
R, 2k
() 2/;1 (K1, (1) — kabu (1,)] + k—; (k1 (1) — kaByy ()]
R, 2k
b (ne) = 50 o (1) + Kby (6)] + k—; oA (uy) + KBy ()]
R 2k (19)
(1) = 52 [knan (8,) + by ()] + 7 (ki () + kB ()]
2un k3
R, 2k
buy(as) = 5 1 [~ (1) + Ky ()] + 7 [y ) By )]

in which the constant k5 is defined as

k3=k1+k2=3—4v (20)
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The quantities 4,(u,), etc. in (18) and (19) are the Fourier coefficients for the displacements of the
boundary of the jth hole due to the influences of the other K — 1 holes, k =1 to K, k # j. These quantities
are obtained by evaluating the following expressions (cf. (17)) and then setting m equal to n:

K
m/ ux = / Zu,( éxv COSmH d@ Bm/ / Zux(éxvéy) Sinmejdef

k=1 T o=l
k#j k#j

A (1) / Zuv (&, ¢,) cosm0,d0;  B,,;(uy) _1/ Zu,, (&, ¢,) sinm0,do;
— T )

T = T %=
k#} k#j

The displacements in the integrands of these expressions are functions of the angles y;, and dimension-
less distances p; from the center of the kth inclusion to points on the boundary of the jth hole. The inte-
grals can all be evaluated analytically using integration formulas given by Crouch and Mogilevskaya
(2003).

The n =0 coefficients agfu,) and ag(u,) are determined by noting that expressions (A.1) and (1) are
equivalent for a point on the boundary of the jth hole. Evaluation of these expressions for a single point
on the boundary of each hole is sufficient to calculate the values of ag{u.) and agfu,) (Crouch and Mogi-
levskaya, 2003).

3.2. Displacement coefficients for a disc

Similar relationships between the Fourier coefficients for the displacements and tractions for the jth disc
(inclusion) can be written as follows:

(1) Forn=1
’ R;
alj(ux) = — = [kyay(t) — (1 = kay)bi;(1,)]
4
/ _ Rj 1 /
bl/(ux) Zﬂj lj(tx) 27TR/ j
(22)
/ J ¢ 1 /
alj(uY) 2'uj al,/( ) 2R
/ R;
by(uy) = — - [=(1 = kyj)ay (&) + kb, (1))
4,LLj

where Q; is the rotation of the disc, defined as

@ = [ (R, 0)R,00 = [ [ (R0, sind; + (R, 0) cos R, 00 = R fa (1) ~ B ()] (23)

Using the definitions aj;(Au,) = a\;(u,) — a),(u,) and by;(Au,) = by;(u,) — b}, (u,) and (18) we find that
Q) = nR;[Ay(uy) — By ()] — nR;[ar;(Auy) — by (Auy)] (24)

If the inclusion is perfectly bonded to the material matrix its rotation is due solely to the influences of the
other K — 1 inclusions.
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(2) Forn>1
, R;
anj(”x) = _2/1” e jan (1) + kojbny (1))
j
/ R;
By ) = = k() + K 4]
j
| " 25)
anj(”y) = _2!”1 [e1jan(ty) — kajbny(t:)]
i

R;
b:u( ) - 2,ujn [k2janj( ) + kljbn/( )]
We note that relations (8) have been used to express (22) and (25) in terms of the Fourier coefficients for

the tractions on the wall of the jth hole.
The values of the n =0 terms ag,;(u,) and a;,(u,) are obtained directly from (14):

aé)k(l/lx) = aOk(ux) =+ (0621(0;? — OC3kO'OC)Xk + 20(1k(7§;yk — aOk(Aux)

a{)k(uy) = aOk(uy) + 20(1/(0';;)(7/{ + ( OCsz + OCZkO' )yk — aOk(Auy)

3.3. Traction coefficients for multiple inclusions

The Fourier coefficients for the tractions exerted on the wall of the jth hole by the jth inclusion are found
by substituting (18) and (19) and (22), (24), and (25) into (11) to eliminate reference to the displacement
coefficients a,,(u.), a,;(u.), etc.; setting the resulting expressions equal to (13); equating the terms involving
sinn8; and cosn;; and then solving for a,(t.), b,(t.), etc. These operations yield the following results:

(1) Forn=1
a(te) = B0 + Byoy, T
ky
~ R, T 26 Gty Gk ey — Ka)i) + (ot Ksg) bt )

— {2k (koksy + ok — ko) = e+ spy) By )|

1
+ 17"/2] [(klj,u + zkl,uj)alj(Aux) + (2k2llj + (1 - kZ/’):u)blj(Auy)}
J

1
blj(tX) = /33_/‘7;); - > 11 [alj(A”y) + blj(AL‘X)]

k
—1V1j [y (uy) + Buj(uy)] + R
J

2
R;
2k1
ai;(ty) = B0,

J 3] y R_/
byj(t,) = Byor + By,

ky
Rk X, V2 {{21(2(7{ ko + kokyy — k) — (e kespg) YAy (uy)

- 1 [Alj(”y) + Blj(”x)} + %Vlj [alj(Auy) + blj(Aux)]

— {Zkz (2k3,uj + (kiky; + koo — kz)/l) +(u+ k.’s,uj)}Blj(uy)}

1
t RV [(2kapt; + (1 = kop)p)ar;(Au) + (kv + 2k )by (Auy)|
J
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(2) Forn>1

2kin
anj(tX) = k ;3 V3j[(k%ﬂj (klklj + k2k2j)ﬂ) n/( u,) — (ky ki + kalj):“Bn/( )]

+ 1? Vo [kt + ki) an; (Auy) + (kapt; — ko) by (Auy)|

2kn
bj(t) = & Ile V3 [(kikay + ok pudy (uy) + (kspt; + (kikeyy + kokog) ) By ()|

n
+ TRE [—(kap; — keojpt)an(Auy) + (ki =+ k) by (Auy) |
2;( (28)
n
an(ty) = T 113 V3 [(kay + (kikeyy + kokoy) i) Ay (uy) + (kikay + kaky;) By (uy) |

+ ]7“/3,- [(kevpt; + kyjp)an;(Auy) — (kapt; — kojia) byy(Auy) |
J

2](17[

k R;

+ ﬁ“/y [(kl.“j - k2jﬂ)anj(A”x) + (k1 u;+ klj.“)bnj(A”y)]
J

by(ty) = — 3 [~ (knkay + kokyy) A (us) + (ksp, + (kikyy + kakoy) ) By (uy) |

where
B 2k2j[l2 + (k] — 2k2(1 — kzj)),uu/ — (1 + k2k3)/,tj2
Y 2+ kspy) (aj + ;)
By — kepy (1 = 2k )y — (1 — 2ko;) 1) (29)
Y 2(p A+ kspy) (koj + ;)
_ kT H
‘831 u+ k3.uj
and
Ytk
1
Y2 = ]T_'u i 1) (30)
p— 2 A
V3 = Tt + i, Y1
in which

Apart from minor notational differences and the presence of the terms involving Fourier coefficients for
the displacement discontinuities, Egs. (27) and (28) are the same as the results given previously (Crouch and
Mogilevskaya, 2003). We remark that these expressions are valid for the limiting case in which p; =0, i.e.
the jth “inclusion” is an empty hole with a traction-free boundary. In this case, of course, the formulas in
Appendix B are not applicable and concept of a displacement discontinuity is not meaningful. The quan-
tities a,{Au,), b,(Au,), etc. should accordingly be set equal to zero if u; = 0.
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4. The algorithm

We adopt an iterative solution algorithm to find the unknown Fourier coefficients for a general problem
involving multiple inclusions. As in the approach described by Crouch and Mogilevskaya (2003), the basic
algorithm relies on the repeated use of (18) and (19) to update the values of the Fourier coefficients for the
displacements on the walls of the holes, given trial values of the traction coefficients. Unlike the approach
described previously, however, we now also include trial values of the Fourier coefficients for displacement
discontinuities in the computations. The manner in which these coefficients are updated is a key feature of
the new algorithm.

4.1. Mohr—Coulomb condition

We assume that interface slip and separation can be represented by a “cohesive crack” model (Bazant
and Planas, 1998), patterned after the original work of Dugdale (1960) and Barenblatt (1962). We further
assume that the slip and separation processes are governed by the classical Mohr—Coulomb yield condition
with a tensile strength cut-off:

log| <c—o,tane; o, < T (32)

where ¢, ¢, and T are respectively the cohesion, angle of friction, and tensile strength of an inclusion/matrix
interface, with 0 < 7 < ccot ¢, as depicted in Fig. 2. For normal stresses o,,. less than the tensile strength,
the interface shear stress o,9 cannot exceed the value specified in (32). To meet this constraint, the interface
must be allowed to undergo a certain amount of localized inelastic deformation, or permanent slip, in the
transverse direction. The normal stress ¢, cannot exceed the tensile strength 7, and, to meet this constraint,
the interface must be allowed to crack apart. Both circumstances require the introduction of displacement
discontinuities along the affected portions of the interface.

Implementation of the Mohr—Coulomb constraint (32) requires an incremental approach. In order to
simplify the presentation of the method, however, we will explain the procedure for a single loading incre-
ment. The same methodology can be applied to successive loading (or unloading) increments.

4.2. Computation of the Fourier coefficients

To begin the solution procedure a value must be chosen for the number of terms Ny in the Fourier series
for the displacements, tractions, and displacement discontinuities for each inclusion, k = 1 to K. All of the

O (= _to)
A

~
~
T ~

"\’/ o (= _tr)
<

< ccotg ->|

Fig. 2. Mohr-Coulomb envelope with tension cut-off.



S.L. Crouch, S.G. Mogilevskaya | International Journal of Solids and Structures 43 (2006) 1638-1668 1649

Fourier coefficients are then initialized by setting them equal to zero for n =1 to N,. The value of N, for
any inclusion can be increased during the iteration process if it is found that additional accuracy is needed
(Crouch and Mogilevskaya, 2003).

For each cycle of iteration p, the Fourier coefficients are updated as follows:

Step 1. Use (27) and (28) to compute the trial traction coefficients " ( ) b("’ (t.), <"’)( t,), and b(p (¢,) at
the jth inclusion due to the influences of all the other inclusions, k = 1 to K k ;é Jj»> as well as the stresses at
mﬁmty and the current values of the displacement discontinuity coefficients a(p (Auy), b,(l’;*l)(Aux),

(Au ), and b(‘” g (Au,). For the first cycle of iteration, this is equivalent to treatmg each inclusion as
a perfectly bonded isolated entity.

Step 2. Use Eq. (3) (with k replaced by j) to compute the trial tractions #*) and t ) at M; equally
spaced points along the boundary of the jth inclusion (where M; > N)), and then compute the local
normal and shear components of these quantities /%) and t(,) at each point using the transformation
equations

(P (R}, 0,,) = tY(R;,0,,) cos Hmj—t—t;”)(Rj,ij) sin 0, (
33)
P (R, 0,7) = =P (R}, 0,,;) 5in 0, +t )(R},0,,;) cos 0,,;

where m ranges from 1 to M; and where 0,,; = 2n(m — 1)/ M;. It should be noted that trial tractions (33) are
estimates of the total, or resultant tractions at each point m; that is, these quantities represent the sums of
the initial tractions and the traction changes due to the presence of the K inclusions. It should also be noted
that positive values of the tractions ¢, and #y on the wall of the hole correspond to negative stress tensor
components o, and a,9, i.e. t, = —0,,. and tg = —a,y.

Step 3. Use (32) and (33) to compute an adjusted set of tractions ¢ and ¢ for each of the M; discrete
points to take account of localized yielding:

(a) If (P (R;,0,;) < T and |t (R}, 0,,)| < ¢; + (P (R}, 0,,;) tan ¢; set

£5(R;, 0j) = 17 (R;, 0,

o(Ry, Onj) = 15" (R;; Oy (34)
6(R;, 00j) = 17 (Ry, 0,))

(b) If —12) (R, 0,) < T and |1 Ry, 0,)| > ¢; + 7 (R;, 0,) tan g, set
t5(R;, 0,,;) = sign(ty” (R}, O c+t R;,0,;)tan ¢;
(R), 0ng) = sign (1 (Ry, 0uy) ) (¢ + 17 (Ry, Ony) tam ) a5
6 (R, 0,7) = 17 (R;, 0,))

(c) If =1V (R;,0,,) > T set
ty(R;,0,) =0
0 J L (36)

£y (R}, 0,) =0

Condition (a) means that the trial tractions for point m lie within the Mohr—Coulomb envelope and
therefore do not require any adjustment; (b) means that the indicated combination of trial tractions lies
outside the envelope and hence the value of the transverse (shear) component is set equal to the yield stress
associated with the prevailing normal traction. Finally, condition (c) represents tensile failure at point m1, in
which case the tractions at this point of the interface are set equal to zero.

Step 4. Compute the x and y components of the adjusted traction changes using the inverse of transfor-
mation (33) and eliminating the initial tractions due to the stresses at infinity:
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ti(Rj7 Omj) = tj(Rj, Omj) COS Omj — tg(Rj7 Omj) Sin Omj + (O’;ﬁ COSs Om] + O—;; Sin Om])

(37)
t;(Rj, ij) = tj(Rj, Q,nj) sin Qmj + t;(Rj, 0,,1/-) COS Hmj + (O_Xocy COS 9,nj —+ (7;; sin 9,,,/)
in which m =1 to M,.
Step 5. Compute the Fourier coefficients associated with #; and 7 using the formulas
2
a;j(tx) = th(R(,—, 0,nj) cosnl,,; Zt 0,j) sin n0,,;
o (38)
2 J
a,(t,) = v Zt’v‘(Rj, O,j) cos 0,5 b, (¢ Z 0,j) sin n0,,;
‘ J m=1 i m=1

These equations are derived in Appendix C using a least squares approach patterned after the work of
Barnes and Jankovi¢ (1999). Eq. (38) are discrete forms of the usual integral definitions of the Fourier coef-
ficients (cf. (17)). Barnes and Jankovi¢ recommend using the value M; = 4N,, and we have followed this
advice in all of the examples discussed below.

Step 6. Substitute (38) into (18) and (19) to update the Fourier coefficients for the displacements of the
15)\;)undary of the jth hole for the pth iteration, i.e. compute o, ( )s b,(;’; (1), af,"jf)(u))), and b,(fj’-)(uy) forn=1to

Step 7. Similarly, substitute (38) into (22), (24), and (25)to update the Fourier coefficients for the dis-
placements of the boundary of the jth disc, i.e. compute a,? (u,), b7 (u,), @\ (u,), and b7 (u,) for n=1
to N,

Step 8. Use Egs. (13)—(16) (with k replaced by j) to compute trial displacement discontinuities Au”) and
Au@ at M; equally spaced points along the boundary of the jth inclusion (where agaln M; = N)), and then
compute the local normal and shear components of these quantities Au”) and Au(, at each point using
transformation equations analogous to (33).

Step 9. Compute an adjusted set of displacement discontinuities Au? and Auj, at each of the M; discrete
points to prohibit overlapping and/or allow for the occurrence of localized cracking or slip:

(a) If cracking has occurred at the point (R;,0,,) and if Au?)(R;,0,,) < 0 then, to prohibit overlapping,

set
Aul(R;,0,,;) =
(39)
Auy(R;, 0f) = Aug (R}, 0,7)
(b) If cracking has occurred and if Aul”(R;,0,,;) = 0 set
(R 9"1/) - >(Rj ’ emj)
(40)

Au(R;, 0,) = Au? (R}, 0,,)
(c) If cracking has not occurred and no slip has taken place, then, to maintain bonding at the point, set
Aul(R;,0,,;) =

(41)
Auy(R;,0,,;) =0
(d) If cracking has not occurred but slip has taken place set
Auy(R;, 0,
+ (R, Ony) = (@)

A5(R;, 0,,) = Auo PU(R;, 0,
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Step 10. Compute the x and y components of the adjusted displacement discontinuities at the points
(Rj, 0nj), m =1 to M;, and then find the Fourier coeflicients associated with Au; and Au; using the formulas
(cf. (38))

a Z Au (R}, 0,,;) cos nb,,;; b Aux = Z Aul (R}, 0,,) sinnb,,;
] m= j m= (43)
Auy Z Au 0,,) cosn0,,; Z Au 0,j) sinn0,,;

These quantities then define the current values of the displacement discontinuity coefficients in Step 1.

Step 11. Continue this process until the largest change in the coefficients between two successive iterates

_ -1
anj (

is less than a small number ¢, i.e. until |a (ur) affj’-*l)(ux)‘ <e, ‘a,(,’j'->(uy) u})‘ < ¢, ete. for all n and

for every inclusion. In most problems exammed to date we have taken ¢ as 10~* times the magnitude of the
largest Fourier coefficient associated with the initial displacements (obtained from the first groups of terms

in (1)).
4.3. Successive over-relaxation

The iteration process can be made to converge faster—or in some cases made to converge when it would
otherwise not—by using the method of successive over-relaxation (Golub and Van Loan, 1996; Varga,
2000). This is accomplished by modifying the calculations in Steps 6 and 7 above, as follows.

First, let a; j(ux), b j(ux), etc. be the trial Fourier coefficients for the displacements of the boundary of the
Jth hole associated with the trial traction coefficients a;,(¢), b, (), etc. from (38). (In Step 6 of the unmod-
ified procedure the trial coefficients for the displacements are simply called a(’”( ), b(”)( .), etc.) Similarly,
let a(u,), b),.(t,) be the trial Fourier coefficients for the displacements of the boundary of the jth disc asso-
ciated with the same trial traction coefficients. Then, use the following relations to compute the updated
displacement coefficients for the pth iteration:

») _ -1 * )
) w) = al ) + ofay(w) - ol ()]

etc.

(44)

/(p) _ -1 « /(p—1)
dP () =al " w) + o|ay(u) - af " w)]
etc.

(45)

In these equations w is the over-relaxation factor, which lies in the range 0 < @ < 2 (Varga, 2000). When
= 1 the results calculated from (44) and (45) are the same as those that would be calculated in Steps 6 and
7 of the original procedure. When w is less than 1 it is referred to as an under-relaxation factor. Under-relax-
ation is often needed to achieve convergence for non-linear problems, and we have found that this is gen-
erally the case for our algorithm, too.

5. Examples

5.1. Crack along the interface of a single inclusion

Toya (1974) derived the analytical solution for the problem of a traction-free, arc-shaped crack along the
interface of a circular elastic inclusion in an infinite plane. The solution is valid for a restricted range of
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crack lengths and combinations of applied stresses at infinity for which the crack faces do not come into
contact (these conditions are carefully delineated in Toya’s paper). The solution could actually be consid-
ered as approximate in the sense that the displacement discontinuities exhibit oscillations very close to the
crack tips, which entails a physically impossible localized overlapping of the crack faces (see, for example,
Chao and Laws, 1997), but consideration of this aspect of the problem is beyond the scope of the present
discussion.

While our Fourier series solution does not attempt to represent crack tip asymptotics, it is instructive to
see the extent to which it can approximate Toya’s results. It is also useful to note that our numerical ap-
proach can easily accommodate situations for which the crack faces come into contact. Illustrations of
these matters are given below.

Following Toya (1974), we consider a crack subtending an angle 2« along the interface of a glass inclu-
sion (V' = 0.22, i’ =44.2 GN/m?) of radius « in an epoxy matrix (v = 0.35, u = 2.39 GN/m?), with a uni-
axial tensile stress g applied at an angle ¢ from the x-axis, as shown in Fig. 3. Guided by Toya’s results, we
take both o and ¢ as 30° to ensure that the crack is open along its entire length (not including the small
regions close to the crack tips). In addition, we take ¢ =0, ¢ > gy, and T > o to ensure that the inclusion
is perfectly bonded over the uncracked part of its interface. The uniaxial tension o, at infinity is achieved by
taking ¢ = 0.750y, o = 0.250y, and oy = 0.4330y.

The numerical procedure described in Section 4 was modified to require that the crack faces be traction
free, and the problem was solved by taking N = 45 and using the iteration parameters ¢ = 10~* and @ = 0.5
(i.e. under-relaxation). With these parameters, the numerical solution took 16 iterations. The computed dis-
tributions of the radial and shear stresses a,,/0y and o,4/5 on the interface are compared with Toya’s ana-
lytical solution in Fig. 4; the corresponding results for the displacement discontinuities Au,/a and Aug/a for
the particular case oo = 1.0 MN/m? are shown in Fig. 5.

It is apparent from Figs. 4 and 5 that the numerical solution for this problem is rather crude. The com-
puted stresses (Fig. 4) clearly exhibit the Gibbs phenomenon as a result of the abrupt changes in ¢, and a,¢
that occur between the cracked and uncracked portions of the interface. The displacement discontinuities
(Fig. 5) are also affected, but to a lesser extent. Moreover, the computed values of ¢, and a,9 along the
cracked portions of the interface are evidently only zero in an average sense.

The Gibbs phenomenon is inherent in Fourier series representations of functions with jump discontinu-
ities (Jerri, 1998). Although the phenomenon cannot be eliminated entirely, several methods have been
developed for filtering it out, including a simple but effective approach due to Lanczos (1966). Lanczos’s

Fig. 3. Geometry for inclusion with interface crack.
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Fig. 5. Computed radial (a) and shear (b) components of displacement discontinuity exhibiting Gibbs phenomenon; N = 45.

“method of local smoothing” for a truncated Fourier series is derived by analytically integrating the series
term by term and then differentiating it numerically using a central differencing scheme with a step size cho-
sen so as to minimize the oscillations in the vicinity of a jump discontinuity. If the Nth partial sum of a
Fourier series representation of a function f{0) with a jump discontinuity is f(0), i.e. if

N
fw(0) = ay+ > _(a, cos n + b, sin n0) (46)

n=1
the locally smoothed value of f(0) is given as follows (Lanczos, 1966):
- Y sin(nn/N) .
fN(Q) =ay+ Z W (a,, cosnb + bn S n@) (47)

n=1
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Applying this algorithm to the Fourier series approximations for the stresses a,,/a¢ and ¢,¢/d¢ in Fig. 4,
we obtain the results shown in Fig. 6. The Lanczos local smoothing technique effectively eliminates the fluc-
tuations in the stresses noticed previously. Further improvement can be achieved by incorporating the
smoothing algorithm within the iterative procedure to ensure that the most accurate possible estimates
of the trial tractions and displacement discontinuities are computed in Steps 2 and 8 of the procedure.
Repeating the preceding calculations with these changes, we obtain the results shown in Figs. 7 and 8. Figs.
9-12 give comparable results for N =90 and N = 180. The three sets of calculations were performed using
¢e=10"*and v = 0.5 and required 16, 17, and 17 iterations for N =45, 90, and 180, respectively.

In solving this problem, no attempt was made to optimize the number of terms in the Fourier series rep-
resentations for the tractions, displacements, and displacement discontinuities. It is useful to note, however,
that a solution obtained with N = 90 is essentially the same as that obtained with N = 180, whereas a solu-
tion with N =45, although generally reasonable, is significantly less accurate.
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Fig. 7. Computed radial (a) and shear (b) stresses (open circles) compared with analytical solution (solid lines) for N = 45.
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If angle « is greater than approximately 35° and all other physical and geometric aspects of the problem
are unchanged, the crack faces will come into contact in the vicinity of one crack tip (the one at angle
0 = 360° — o). This is the limit of validity of Toya’s solution. In order to demonstrate the utility of our
numerical approach, we consider a much larger value of this angle, « = 90°, and repeat the calculations,
assuming zero friction in the zone of contact. The results for the stresses and displacement discontinuities
are given in Fig. 13. It can be seen from Fig. 13(b) that the crack is closed for 0 between approximately 270°
and 310° but is otherwise open. Fig. 13(a) shows that the radial stress is compressive (g, < 0) in the zone of
contact, as expected.

We conclude from this example that our numerical procedure accurately predicts the tractions and dis-
placement discontinuities for an inclusion with an interface crack, provided a sufficiently large number of
terms is taken in the Fourier series representations of these quantities.
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Fig. 11. Computed radial (a) and shear (b) stresses (open circles) compared with analytical solution (solid lines) for N = 180.

5.2. Debonding of a smooth inclusion

The analytical solution is available for an unbonded, smooth (i.e. frictionless) circular inclusion with
elastic constants v/ =v and p' = p in an elastic plate under uniaxial tension ¢}y = o, at infinity (Stippes
et al., 1962). Under the prevailing stress state the inclusion separates from the plate over a portion of its
periphery, but is in contact over the arcs —n < 0 < 5 and 7 + 5 < 0 < © — 5. The contact angle 7 is inde-
pendent of the elastic constants v and u (Stippes et al., 1962). Because of symmetry we will restrict our
attention to one-quarter of the circle, 0 < 0 < n/2. (We note that Sheremet’ev (1952) considered the more
general case of an unbonded, smooth inclusion with elastic constants v/ # v and u’ # u but did not present
any numerical results. Later, Noble and Hussain (1969) treated the same problem, also without giving any
numerical results.)
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Fig. 13. Stresses (a) and displacement discontinuities (b) for partially closed crack.

The subject problem can be solved numerically using the iterative procedure described in Section 4. A
frictionless, no-tension interface is modeled by taking the Mohr—Coulomb parameters as ¢ =¢ =T =0;
the contact zones are then automatically determined by the enforcement of a no-overlap constraint during

the iteration process.

The computed radial stress o,,/0, in the zone of contact is compared with Stippes et al.’s solution in Fig.
14; a similar comparison for the circumferential stress o49/5 over one quadrant of the boundary of the hole
is given in Fig. 15. The numerical results in these figures were obtained using N =180, ¢ = 10"*, and
w = 0.5. The Lanczos local smoothing technique was used to filter out unwanted oscillations caused by
the Gibbs phenomenon, and the solution required 18 iterations. It can be seen that the numerical results
are in good agreement with the analytical solution for this problem, except that our Fourier series approach
slightly overestimates the extent of the zone of contact, as can be seen in Fig. 14.
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5.3. Debonding and slip of a rough inclusion

A more serious test of our numerical algorithm concerns the situation for which the interface between
the inclusion and the wall of the hole is rough. In this case, the inclusion is not free sliding and the solution
of the problem depends on the coefficient of friction between the inclusion and the plate. Hussain and Pu
(1971) used a variational approach to obtain a semi-analytical solution of this problem for v/ =v and
w = p, and we now compare our numerical results with theirs for the case that the coefficient of friction
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results from Fourier series approach.

is equal to 1.0, .e. ¢ =45°. As in the preceding example, the plate is loaded in uniaxial tension ¢} = g, at
infinity.

Hussain and Pu’s numerical solution for the radial stress a,,/0 is reproduced in Fig. 16(a), together with
our Fourier series solution (locally smoothed and obtained in 34 iterations using N = 180, ¢ = 10~*, and
o = 0.5); similar comparisons for the shear stress o,¢/c are given in Fig. 16(b). It can be seen that the re-
sults are similar, although some differences do occur. For example, Hussain and Pu obtain a value of 0.52
(approximately) for the radial compression —a,,/a at = 0, whereas we find the value 0.49. Also, accord-
ing to Hussain and Pu, the onset of frictional sliding (where —a,,. = ,¢) is at 0 = 2.49°. By extrapolating the
curve for ,9/5¢ in Fig. 16(b) to estimate a sharp break point, we find a value of approximately 3° for our
approach. In addition, as in the case of a smooth inclusion, our Fourier series approach predicts a slightly
larger zone of contact. Overall, however, the results agree reasonably well, leading us to conclude that our
algorithm is capable of modeling both slip and separation of the interface of a circular inclusion.

5.4. Multiple inclusions

Finally, to illustrate the capability of modeling interactions among multiple inclusions, we consider the
case of four inclusions in a plane loaded by a uniaxial tensile stress 7 = 0 at infinity. The inclusions all
have radius a and are centered on the corners of an imaginary square of side 2d (d > a), as shown in Fig.
17. As in the example in Section 5.1 we let the elastic constants of the inclusions and the matrix be v/ = 0.22,
1’ =442 GN/m?, and v =0.35, u = 2.39 GN/m?, respectively. We also assume that the interfaces of the
four inclusions have the same Mohr—Coulomb parameters: ¢ = 2gy, ¢ =0, and T = 24,. (We take ¢ equal
to zero for modeling convenience—with this choice for the parameter it is easy to identify at a glance the
portions of the interface that undergo slip.) Under these conditions, the problem is symmetric and the dis-
cussion can be limited to any one of the four inclusions, say the one centered at the point (x,y) = (d, d) and
labeled 1 in Fig. 17. All subsequent references to this inclusion should be understood also to apply to the
other three inclusions, with appropriate allowances made for symmetry. The results presented below were
obtained by taking N = 180 for each inclusion, with ¢ = 10™* and w = 0.5. The Lanczos local smoothing
technique was again used to filter out unwanted oscillations caused by the Gibbs phenomenon.
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Fig. 17. Four equal sized inclusions with elastic constants v/, ¢’ in a plane under uniaxial tension at infinity.

We first suppose that the inclusions are far enough apart so as to be effectively isolated from one an-
other, i.e. d > a. It can be shown that the radial and shear stresses along the interface for this case are
6, = 60(0.6093-0.7859 cos 20) and o,y = 0.78590)sin20. The maximum radial tension is therefore
g, = 1.39520 (at 6 =90° and 0 =270°) and the maximum shear stress is |o,9| = 0.78590, (at 0 = +45°,
+135°). Consequently, neither debonding nor slip of the inclusion interface will occur under the assumed

conditions.

Interaction effects among the inclusions become progressively more important as d/a — 1. For example,
if dfa = 1.5 the radial stress is significantly altered in the vicinity of the points where the inclusions are clos-
est together (0 = 180° and 0 = 270° for the inclusion we are considering—the one in the first quadrant).
This is shown in Fig. 18, which compares the distributions of the radial and shear stresses for d/a = 1.5 with
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Fig. 18. Radial and shear stresses for inclusion 1 in Fig. 17 for d/a = 1.50 and d/a — .
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Fig. 19. Stresses (a) and displacement discontinuities (b) for inclusion 1 in Fig. 17 for d/a =1.315.

the corresponding distributions of these quantities for an isolated inclusion. It can be seen that the radial
stress is more affected by the presence of the other inclusions in this case than is the shear stress. Debonding
and slip of the interface still do not occur.

By trial, it is found that the tensile strength of the inclusion/matrix interface is reached when d/a = 1.315;
this occurs at the point 6 = 270.5° for inclusion 1. The introduction of a small crack at this location then
creates a stress-raiser that causes the crack to extend until the radial stress at each tip is less than the tensile
strength 7'= 20,. The resulting stress and displacement discontinuity distributions are given in Fig. 19(a)
and (b). (The values of the displacement discontinuities correspond to the particular case for which
0o = 1.0 MN/m?.) These figures show that the nature of the interfacial damage is rather complicated, even
for this relatively simple problem. The portions of the interface where polar angle 6 is in the range
202° < 6 < 336° (approximately) become debonded, because g, = 0 and Au, # 0 over these arcs. Slip oc-
curs over arcs of approximately 14° on either side of the zones of separation; these portions of the interface
can be identified by the conditions o,y = 204 (=c¢), Auy # 0, and Au, =0 and o, # 0. Finally, we can see
that the rest of the interface remains perfectly bonded, because Au, = Auy = 0. For this simple hypothetical

0.4 -
20 — ©,,/0, -
5] .. 0,/0, H 03 - — Au,/a,107
: - Auy/a,107
1.0
02
0.5 - K *,
l' N
:. (3
0.0 T T T T T T T T ™1 0.1 1

\;'){ 60 90 120 *45) 210 240 270 300 336_\w) :
0547 H H .

: : ‘ :

H Angle,8 : B S e I A B A
L0 4; : 30 60 90 120 150 180 210 240 270% 300 330 ;360
-1.5 i 20.1 4 Angle,0 “.

20 5. L
\
02 4 oo
25
(@ (b)
304 03 J

Fig. 20. Stresses (a) and displacement discontinuities (b) for inclusion 1 in Fig. 17 for d/a = 1.05.
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Fig. 21. Stresses (a) and displacement discontinuities (b) for inclusion 1 in Fig. 17 for d/a =1.01.

example, therefore, the inclusion is loosened by either debonding or slippage over an arc of approximately
162°, or 45% of its periphery.

The zones of slip and separation are even more pronounced when the inclusions are closer together. This
can be seen from Figs. 20 and 21, which show the distributions of stress and displacement discontinuity
along the boundary of inclusion 1 for d/a = 1.05 and 1.01. (The numerical solutions for these cases required
72 and 85 iterations, respectively.) The proximity of the inclusions causes the zones of slip and separation to
spread until, for the most severe case examined, d/a = 1.01, the inclusion is loosened over its entire lower
half. It should also be noticed, however, that the radial compression in the vicinity of 6§ = 180° increases
rapidly as d/a — 1. If frictional effects were being considered, the increased compression would serve to in-
hibit slip over some parts of the interface.

6. Concluding remarks

The numerical procedure presented in this paper is designed to model the evolution of interfacial damage
for multiple, randomly distributed circular elastic inclusions in an elastic plane. Damage is characterized by
the occurrence of displacement discontinuities along the inclusion/matrix interfaces, because displacement
discontinuities physically represent localized slip and/or separation of these interfaces.

For problems in which damage occurs, we have found that relatively large numbers of terms are required
in the truncated Fourier series representations of the interface parameters, even when the inclusions are not
close to touching. Therefore, rather than attempting to determine the optimal numbers of terms in the Fou-
rier series during the iteration process—as can conveniently be done when the inclusions are perfectly
bonded (Crouch and Mogilevskaya, 2003)—in the examples considered to date we have simply fixed the
numbers of terms at the outset, taking the value of N, large enough for each inclusion £ to model any dam-
age that might occur.

We have not looked carefully at the efficiency of our algorithm, and this is an issue that clearly needs
attention. The rate of convergence of the iteration process is slow when two or more inclusions are close
to touching, and this difficulty is even more pronounced when damage occurs. The current algorithm relies
on the use of an under-relaxation parameter to achieve convergence, and we are not aware of any theoret-
ical guidance for selecting this parameter for non-linear problems. By trial, we have found that the value
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o = 0.5 usually works satisfactorily, although it some cases it seems likely that the rate of convergence
could be improved by dynamically adjusting @ during the iteration process. Additional work is required
to support this tentative conclusion, however.

Longer term, we plan to refine the iterative procedure by using the fast multipole technique (Rokhlin,
1985; Greengard and Rokhlin, 1987; Carrier et al., 1988) to efficiently represent the far-field influences
of groups of inclusions by means of Taylor expansions. A more critical consideration for now, however,
is to seek ways of improving the performance of the iteration process for even a few closely spaced
inclusions.

Appendix A. Displacements and stresses in the matrix

The displacements and stresses at an arbitrary point (x,y) = (£, ,) in the matrix can be expressed as the
initial values of these quantities due to the stresses at infinity plus the contributions from the K circular
holes. As in our previous work (Crouch and Mogilevskaya, 2003), we represent the latter in terms of local
polar coordinates ry, y, originating at the center of the kth hole. In addition, we define a dimensionless
parameter p;, = ri/ Ry, where R, is the radius of the hole. For a point in the matrix we have that p, > 1.

Using these definitions, the displacements at point (x,y) = (&, €)) are

1 1
(éx»é ) [kla (1 _k2)6§}€x+56§;éy

+2Lk1 XK: (2;% H 2Rk (aw(ty) + bi(ty)) + are(uy) + blk(uy)} COS i

+{ak(uy) — biy(uy) } sin Xk:| + Z

p |:{ k3ank( ) + kla,,k(ux) — kzb,,k(uy)} cosny,
n=1 Ik

{2 k3bnk( ) =+ k b,,k(ux) + kza,,k(uy)} SiIl ny

1 1\ R
+§ (1 Pk) 2 {an cos(n+2)y; + Su sin(n + 2),@}})

1 1
uy(ém fv) = ﬂgzéx + @ [_(1 - kz)O';(: + klo’;;]é}’

+ 2%1 kEK; (L {—{alk(uy) — bu(uy) } 08 1,

2p;

_{ZZ (ane(t) + bue(ty)) — ane (i) — blk(uy)} sin xk]

1 1R
+ 2](1 "Z pk |:{2 k k3ank( ) + klank(uy) + kank(ux)} cos nyy

Ry .
—‘r{ﬁlﬁbnk( ) + klby,k( ) kza,,k(ux)} S ny,;

1 1\ R
-3 <1 - p_,§> % {Snk cos(n + 2)y; — Dy sin(n + 2)//(}} )
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where

S = (1) b1 + 2 () + b))
v (A.2)

2 ) = s ()
k
Notice that the Fourier coefficients agi(u,) and ag(u,) do not appear in Eq. (A.1). As explained in
Crouch and Mogilevskaya (2003), the values of these quantities are arbitrary insofar as calculation of
the displacements at the point (x,y) = (&, €,) is concerned.
The stresses associated with displacements (A.1) are

an - ank(tx) - bnk(ty) +

GulE &) = 0% + o Z (552 {0+ 6) = 2 o) + bt b eos 2

2k 4= 2p;
2 , s
TR {alk(uy) — b(us) } sin 2y, | — Z F (1 + ki) an(t) = (1 = ka)buc(1,)
n=1 k

+2RL,:1 (2a, (1) — b,,k(uy))} cos(n+ 1)y,

(1 = ka)aw (,) + (1 + k1 )bt )+2:k” (e (1) + b (1)) }sm(n+1)

2 1
—an{cosxkcos(n—i-2)xk—(n+ )(l—p—) cos(n+3)y }

2
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} N gy | 2u
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0 R 0) + (= k)b (1) + 22 2ae >+b,,k<ux>>}sin<n+1>xk
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Appendix B. Displacements and stresses in an inclusion

The displacements and stresses at an arbitrary point (x, y) = (¢4, ;) within the kth inclusion can similarly
be written in terms of local polar coordinates p; = ri/ Ry, yx originating at the center of the inclusion. In this
case, we have that 0 < p, < 1.

The displacements of the inclusion can be expressed in terms of the Fourier coefficients for the displace-
ments only (cf. (A.1)):

1
kol — (1 — ko ]Ec +

1 1
(éx?é )= %k(” )+ 2_,“k

41y,

o &y
+Zp d, (uy) cos nyy + bl (uy) sin ny, |

+ TS!{ Zn(p;(’*z o ’0;’) [( nk(ux) + bnk( )) COS(}’I — Z)Xk
_(ank(uy) - b;k(ux)) sin(n — 2))@}
1 1 1

(& &) = 500 t) + 5 - 00+ - 21— ko + kuayIe,

k
+ Z Pi [“:1k(”y) cos nyy + by, () sin ”Xk]
n=1
1 &

T Z"(P,'}z —0}) [(aﬁ,k(uy) — b, (u,)) cos(n — 2)y,

+(a (u, ) + b, (1)) sin(n — 2),]

The coefficients ap, (u,) and a,(u,) are needed in this case to account for possible translations of the
inclusion.

The stresses associated with displacements (B.1) can be expressed in terms of the Fourier coefficients for
the tractions, and do not directly depend on the elastic constants:

0u(én &) = —alk( o) = pi(ba(t) — ax(t,)) sin y;
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anlty) — bult >>{pk cos 7 sin(n — 275
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(ax(t:) + bax(t))) sin x4

ty)cos(n — 1)y + bu(ty) sin(n — 1) ;]
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Appendix C. Determination of fourier coefficients by least squares

To determine the Fourier coeflicients a;, (¢.), b,,(%), a,,

(1), and b, (2,) associated with the adjusted trial

traction changes 7 and 7 in (37), we apply the least squares methodology used by Barnes and Jankovic¢
(1999) for an analogous problem in groundwater flow. In this approach, we select M; uniformly spaced con-
trol points around the boundary of the jth inclusion, compute the adjusted trial tractions at these points due
to the stresses at infinity as well as the influences of all of the other inclusions k =1 to K, k # j, and then
minimize the following functions with respect to a, (%), b,(%), etc.:

M; [ N 2
A= [Z[a: i(t:) cosnl,,; + b7 (t,) sinnd,,;] — £:(R;, e,n_j)]

m=1 | n=1

A7 = 2 [2[ a,(t,) cos nl,,; + b, (t,) sin nf,,;| — (Rjaemj)]

n=1

in which we assume M; > N;.
Successively differentiating the first one of (C.1) with respect to @, () and b, (#.) and setting the resulting
expressions equal to zero gives the following formulas:

M, TN q
/ Zl[a,’jj(tx) cosn,; + ij(tx) sinn0,,] — t.(R;, 0.;) | cos p0,,; =0
m=1 :n:I €2)
M [ N;
[a,*lj(tx) cosnl,,; + b:j(tx) sinn0,,;] — t.(R;, 0,;) | sinpl,; =0
m=1 | n=1
Similarly, differentiation of the second one of (C.1) with respect to a;,(¢,) and b, (t,) gives
M; [ N, 1
[a,(t,) cosnO,; + b, (t,) sinnl,,;] — t,(R;, 0,;) | cos p0,,; = 0
. : (€3)
M; [ N;
[azj(ty) cosnb,,; + b;j(ty) sin nf,,] — t;(Rj, 0,;) | sinpb,,; =0
m=1 | n=1
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If the M, control points are uniformly spaced around the boundary it can be shown that

M, M,
Z cos n0,,; sin p0,,; = Z sin n0,,; cos p0,,; = 0 (C4)
m=1 m=1
and
M; M; M; . p=n
cos n0,,; cos p0,,; = sinnf,,;sinp0,; =< 2° © (C.5)
mZT j y ; y =0 gt

for p and n =1 to N;, and hence

2 & 2 & ,
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J m=1 J m=1

a:j(tx) =
(C.6)

. 2 M, . . 2 M; . .
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J m=1
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